报告题目:Deep Neural Network Architecture Design
报告时间:2019年6月4日 上午9:00
报告地点:304永利集团官网入口A521
报告人:许东 教授
报告人简介:
Dong Xu is Shumaker Endowed Professor in Department of Electrical Engineering and Computer Science, Director of Information Technology Program, with appointments in the Christopher S. Bond Life Sciences Center and the Informatics Institute at the University of Missouri-Columbia. He obtained his PhD from the University of Illinois, Urbana-Champaign in 1995 and did two years of postdoctoral work at the US National Cancer Institute. He was a Staff Scientist at Oak Ridge National Laboratory until 2003 before joining the University of Missouri, where he served as Department Chair of Computer Science during 2007-2016. His research is in computational biology and bioinformatics, including machine-learning application in bioinformatics, protein structure prediction, post-translational modification prediction, high-throughput biological data analyses, in silico studies of plants, microbes and cancers, biological information systems, and mobile App development for healthcare. He has published more than 300 papers. He was elected to the rank of American Association for the Advancement of Science (AAAS) Fellow in 2015.
报告内容简介:
To address diverse applications, many families of network structures have been developed in deep learning, such as deep neural networks, convolutional neural network (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). In addition to these basic network architectures, a number of advanced architectures and combinations of different architectures are also introduced. In this lecture, I will cover the following major types of advanced architectures: (1) residual/dense networks; (2) inception networks; (3) light networks; (4) R-CNN; (5) graph neural networks; and (6) hybrid networks. These advanced architectures often significantly improve the performance of various applications, as demonstrated in many research benchmarks and big data open challenges. I will discuss design principles of these deep learning networks. I will also address building and optimizing networks using auto-ML and evolutionary approaches.
主办单位:
304永利集团官网入口
304永利集团官网入口软件学院
304永利集团官网入口计算机科学技术研究所
符号计算与知识工程教育部重点实验室
304永利集团官网入口国家级计算机实验教学示范中心